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[1] Ecosystems driven by hydro-climatic fluctuations at
different time scales can be interpreted as non-equilibrium
dynamical systems. Here we explore the propagation of
daily and interannual rainfall fluctuations through the soil-
plant system using the theory of superstatistics. With the
help of simplified stochastic models of rainfall, we show
how interactions of daily and interannual rainfall
fluctuations may qualitatively change the probability
distributions of rainfall toward higher frequencies of
extreme droughts and intense storms. This in turn is likely
to induce marked changes in productivity of mesic
ecosystems, while more xeric ecosystems might be
insensitive or even benefit from them. This study provides
a theoretical basis for predictions of ecosystem responses to
the increased precipitation variability expected in future
North American climate regimes. Citation: Porporato, A.,
G. Vico, and P. A. Fay (2006), Superstatistics of hydro-climatic
fluctuations and interannual ecosystem productivity, Geophys.
Res. Lett., 33, 115402, doi:10.1029/2006GL026412.

[2] Hydro-climatic processes fluctuate on a wide range of
time scales. Such fluctuations are often unpredictable from
the standpoint of living systems, and adapting to them
presents one of the grand challenges for the survival of
individuals and for the stability and function of communi-
ties and ecosystems. A critical question is how fluctuations
in hydro-climatic variables at different time scales change
the frequency and intensity of extreme events, and how
those changes affect ecosystems. There is a growing con-
sensus that an increase in frequency and intensity of
extreme hydro-climatic events will represent one of the
most potent features of global climate change, with major
possible social and biotic impacts [Allen and Ingram, 2002;
Easterling et al., 2000; Weltzin et al., 2003]. Recent field
experiments [Gutschick and BassiriRad, 2003; Knapp et al.,
2002; Knapp and Smith, 2001] and modeling analysis
[Porporato et al., 2004] have shown that extreme hydro-
climatic events are capable of generating intense impacts on
organisms in water-limited ecosystems.

[3] Understanding the adaptations and responses of
organisms and ecosystems to hydro-climatic variability
and extremes requires understanding the probabilistic struc-
ture of the critical hydro-climatic drivers. ‘Superstatistics’
can be applied to explain the qualitative variation in the
distribution and extremes of external forcing varying at
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multiple hierarchical scales [Beck, 2001; Beck and Cohen,
2003], describing the superposition of ‘local’, or short time-
scale fluctuations, that combine to produce a higher-order
overall distribution. The latter may be qualitatively different
from the ‘local’ one, with dramatic repercussions on the
statistics of extreme events. In mathematical terms, imagine
that the intermittent, non-linear dynamics of a representative
state variable, z (rainfall depth or interarrival time between
storms in our case), at short time scales is described by the
probability density function (pdf), p(z; p), where p is a
parameter. If p itself is varying so that the external forcing
fluctuates at longer time scales, z is driven to a different/new
‘local’ equilibrium. When the timescale of variation in p is
much larger than the one of z, the probability distribution
function of z can be obtained as a superposition of tempo-
rary equilibria, that is,

pe) = / pllo)e(o)dp. (1)

where p(z|p) is the conditional probability of z given p,
while @(p) is the distribution of p [Beck, 2001; Benjamin
and Cornell, 1970].

[4] Water-limited ecosystems are excellent examples of
externally-forced, non-equilibrium systems, and the concep-
tual framework of superstatistics can be readily applied to
them. In fact, changes in the hydro-climatic regime from
growing season to growing season are generally controlled by
large-scale circulation patterns that are well known for their
interannual and interdecadal variability [ Goodin et al., 2003].
This is especially true for rainfall, where daily events are a
pulsing process with random interarrival times and intensities
(e.g., Figures 1a and 1b), with distributional statistics exhib-
iting marked interannual variability (Figures lc, le, and 1g).
Ecosystems tend to reach equilibrium with the daily forcing
within each growing season, while year by year the interan-
nual variability in daily forcing drives ecosystems toward
new ‘local’ equilibria. If the adaptation times of the systems
are relatively short, as it is often the case for water-limited
ecosystems, their ‘global’ statistics describing the overall pdf
of rainfall result from a superposition of the ‘local’ equilibria
determined by fluctuations in the pdfs of daily rainfall
(equation (1)).

[s] To proceed quantitatively we use a simple stochastic
model of daily rainfall [Laio et al., 2001], that describes the
occurrence of rainfall as a compound Poisson process with
frequency of events X\. The distribution of times T between
precipitation events is thus an exponential with mean 1/X,
Pp-(T|XN) =X exp(—X\T), and exponentially distributed rainfall
amounts /# with mean «, pu(hla) = /o exp(h/cr). This
model fits the observed daily rainfall data for individual
growing seasons quite well. However, when applied to all
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Figure 1. Growing season (April to September) rainfall
regime at Manhattan, KS (39°12'N, 96°35'W; coop. id.
144972; data available online at www.ncdc.noaa.gov).
Daily precipitation during (a) a very dry and (b) a very
wet growing season. (c) Time series of mean depth of
rainfall events, a (mean 11.4 mm, standard deviation, s.d.,
2.4 mm); (e) mean rate of storm arrival, X (mean 0.30 1/d,
s.d. 0.06 1/d); (g) total rainfall during the growing season, P
(mean 612.4 mm, s.d. 180.3 mm). Frequency distribution
and fitted two-parameter gamma distributions of (d) o and
(f) X (parameters: a;, =21.8, b, =1.90 1/mm; a, =27.4,b. =
91.9 d). (h) Frequency distribution of total precipitation, P,
and corresponding theoretical model (solid line); the pdf
obtained assuming no interannual variability is also plotted

for comparison (dashed line).

years combined, the model underestimates rainfall variabil-
ity, based on the comparison of measured total precipitation
with the one modeled including only daily fluctuations
(Figure 1h). The strong interannual variability in the mean
rainfall frequency and event depth (\ and «, respectively) is
even more evident in Figures 1c and le. Formally, interan-
nual variability could be defined as the changes in the year-
by-year statistics that cannot simply be explained as the result
of different realizations of the same stochastic process
describing intra-annual fluctuations. Interannual fluctuations
in rainfall depth and frequency can be assumed to be
independent; a good model for such interannual fluctuations
(Figures 1d and 1f) [D’Odorico et al., 2000] is a two-
parameter gamma distribution

A

b —1 b
. _ x ay Xx7 2
8:x) = gy e o)

where x stands for either o or X\, b, is the scale parameter,
and a, is the shape parameter of the distribution.

[6] The superstatistics of rainfall depth and interval
between storms can be obtained analytically by means of
equation (1), using the exponential distributions for daily
fluctuations conditional on the parameter values, the dis-
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tributions of which are described by equation (2). Accord-
ingly, the pdf of rainfall depth / can be shown to be

2b1(10/1+])/2 /2
p(h) = Wh(ar 2Ky, [2\/ bhh]’ A3)

where K,, is the Bessel function of order nth [Abramowitz
and Stegun, 1965]. The tail of this pdf is similar to that of a
stretched exponential distribution [Sornette, 2003] and
therefore intermediate between a power-law (e.g., scaling
behavior) and an exponential one. Interannual variability
thus increases the frequency of extreme rainfall event depths
with respect to the model including only daily variability.
The obtained pdf (equation (3)) well describes the observed
rainfall patterns, while the exponential distribution proves to
be inadequate to statistically characterize extreme storm
depths of all the years combined (Figure 2a). Similarly, the
pdf of the intervals between storms, T, including interannual
variability, can be obtained as

a-b
p(r) = 1 b (4)
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Figure 2. (a) Pdf of rainfall depths and (b) interarrival
times obtained as superstatistics of daily and interannual
variability (continuous lines); comparison with the expo-
nential pdf corresponding to no interannual variability
(dotted lines), and observed frequency distributions at
Manhattan, KS (closed symbols). (c) Pdf of the duration of
periods of plant water stress at Manhattan, KS: Monte Carlo
simulation (closed symbols); fitted Pareto distribution
(continuous line); pdf obtained with no interannual varia-
bility (open symbols). The parameters of the stochastic soil
moisture model [Laio et al., 2001] are: soil type is silty loam
(n=0.47,s,=0.14, s, = 0.16, s* = 0.35, s, = 0.59, K, =
33 em/d, b =5, E,, = 0.01 cm/d) and maximum vegetation
transpiration is Ej . = 0.45 cm/d.
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Figure 3. Time series of ANPP (stars) and estimated
ANPP at (a) KNZ LTER site, KS, and (b) SGS LTER site,
CO. Estimated ANPP is obtained with a multiple regression
model using only the total rainfall over the growing season,
P (open symbols), and including also the mean event depth,
a, and the mean interval between rainfall events, 1/\ (close
symbols). At KNZ the linear regression using the total
precipitation resulted in 72 = 0.40 (237 + 0.30P + €; O¢ =
85 g/m?), while the multiple linear regression improved r
up to 0.47 (437 — 6.2cc — 41N + 0.32P + ¢; oe = 84 g/
m?). At SGS the linear regression with P yielded * = 0.27
(40 + 0.27P + €; 0¢ = 35 g/mz), while the multiple linear
regression gave 7> = 0.53 (173 + 28 — 40N~' — 0.29P +¢;
o¢ = 31 g/m?). The random deviation from the linear
regression, &, is practically Gaussian distributed, with zero
mean and standard deviation o¢. At both sites, the growing
season is assumed to last from the beginning of April to the
end of September. Annual ANPP data collected at KNZ and
SGS LTER sites are available online at http:/intranet.
Iternet.edu/cgi-bin/anpp.pl (PI: A.K. Knapp and M.D.
Smith) [Knapp and Smith, 2001]. Note that in order to
obtain meaningful statistics for KNZ we used rainfall
records from Manhattan, KS, located approximately 12 km
north of the LTER site. Daily rainfall records for SGS LTER
site are available on line at http://sgs.cnr.colostate.edu.

which, interestingly, is a Pareto distribution with scale
parameter b./a, and shape parameter —1/a.. [Laherrere and
Sornette, 1998]. Data from different sites in the USA show a
wide range of values for a., always well above 2 (i.e., the
distribution is not Leévy stable [Sornette, 2003]). The power-
law tail implies more frequent extreme events with
significant implications for the return time of drought
periods, and thus repercussions for vegetation water stress,
river streamflows, and water resource availability.

[7] Correct modeling of the hierarchical variation in
rainfall frequency and depth is crucial for improving pre-
dictions of important attributes of water limited ecosystems.
It has already been shown how interannual variability in
rainfall can cause bimodal probability distributions of mean
soil moisture [D’Odorico and Porporato, 2004; Ridolfi et
al., 2000]. The distribution of soil moisture affects the
distribution of plant water status which in turn directly
impacts ecosystem function. In particular, rainfall daily
and interannual fluctuations can be related to the duration
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T« of periods in which soil moisture is below a threshold s*,
marking the onset of water stress. Figure 2c shows the
probability distribution of 7« resulting from Monte Carlo
simulations, using the stochastic soil moisture model [Laio
et al., 2001] with and without the inclusion of interannual
variability. The distribution of 7+ with interannual variabil-
ity is well described by a Pareto distribution (solid line in
Figure 2c), the power-law behavior of which implies a
higher frequency of long periods of plant water stress,
resulting in reduced plant carbon assimilation and net
primary productivity [Porporato et al., 2001].

[8] We illustrate these implications by examining two
grassland ecosystems with different degree of water limita-
tion, for which long series of aboveground net primary
productivity (ANPP) are available: the shortgrass steppe,
represented by the Shortgrass Steppe Long-Term Ecological
Research (LTER) site (SGS) in northern Colorado, and the
tallgrass prairie, represented by the Konza Prairie LTER site
(KNZ) in eastern Kansas. ANPP at these sites is significantly
correlated with interannual variability in total growing season
rainfall (#* = 0.40 and »* = 0.27 for KNZ and SGS,
respectively; Figure 3). The inclusion of mean frequency
and intensity of rainfall along with total annual rainfall in a
multiple linear regression improves the ANPP prediction,
especially for the semi-arid shortgrass steppe site (% = 0.47
and 7* = 0.53 for KNZ and SGS, respectively). Climate
models predict less frequent precipitation occurrence, but
larger rainfall input per event due to more intense convective
storms [Easterling et al., 2000]. We explored the consequen-
ces of such changes via Monte Carlo simulations by predict-
ing ANPP using the multiple regression of Figure 3 and
changing the parameters in the probability distributions of
interannual variability (i.e., the two-parameter gamma distri-
bution of equations (2)) while keeping the mean total
precipitation constant. As shown in Figure 4, the results

1.2
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Figure 4. Normalized mean ANPP under different rainfall
scenarios corresponding to changes in interannual varia-
bility for constant mean rainfall totals, at KNZ (continuous
line) and at SGS (dashed line). The hypothetical rainfall
scenarios are generated such that the means of o and X\, @
and X\, are modified in opposite ways in order to keep the
mean total precipitation constant, P = & \. Thus values of
the parameter k = aprojecl‘ed/acurrenl‘ hlgher than one
correspond to increased mean intensity and reduced mean
frequency of rainfall events, and vice versa for £ < 1. The
ANPP is obtained by means of the multiple regression
models of Figure 3 that employ the annual mean depth of
rainfall events q, the annual mean rainfall frequency X\, and
the cumulative precipitation during the growing season P.
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predict a low impact of changes in rainfall patterns on
ANPP at SGS, as opposed to a marked decrease in mean
ANPP at KNZ. The latter finding agrees with results from
a 4-year rainfall manipulation experiment [Knapp et al.,
2002]: however, the results of the regressive model cannot
be directly compared to experimental data, due to the short
duration of the experiment, which only provides a limited
characterization of the link between interannual rainfall
variability and ANPP. The diverging results between the
two sites can be explained by the difference in total
precipitation, which reflects a difference in mean storm
depth (a0 for KNZ is twice that of SGS), rather than a
difference in mean rate of storm arrival. As a consequence,
at KNZ an increase in mean storm depth would likely
result in increasing losses due to runoff and deep drainage
combined with longer return intervals with greater soil
moisture depletion, resulting in decreased net primary
productivity, while at SGS more intense rainfall is likely
to be more effectively used by the vegetation. The fact that
the current vegetation at SGS is more adapted to water
stress, as opposed to the more mesic KNZ prairie, could
further enhance the differences in ecosystem response.

[0] In summary, we have shown that interannual vari-
ability of plant productivity is substantially explained by
interannual patterns of rainfall total amount, frequency and
storm depth. These patterns arise from superstatistics of
rainfall at different time scales, which can lead to more
likely extreme events in terms of intensity of storms and
duration of droughts. Under different rainfall scenarios, our
multiple regression model for ANPP as a function of rainfall
patterns predicts a decrease of plant productivity, when
event depth and interval among storms increase. This is
particularly evident in mesic grasslands, where rainfall
partitioning and plant water stress tend to be very sensitive
to changes in timing and amount of rainfall, and clearly
shows that the impact of interannual variability and climate
change will be different depending on the type of water
limitation of each ecosystem.
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